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Abstract. A statistically based characterization of the topography of a standard potential surface (PS) may
allow its reconstruction in basins containing monotonic sequences of local minima and saddles. Starting with
this partition of the PS, one can explore kinetic properties of those basins and provide a reliable dynamical
diagnosis. We found that certain topographical patterns of the standard PS underly kinetic properties which
may lead the probability density to concentrate in basins of high energy, in which “wrong” structures are
kinetically favored, rather than in the basin of the global minimum. We examined also considerations that
link properties of the contact between the reaction coordinate and thermal bath with the efficiency of
relaxation on the PS.

PACS. 82.20.Kh Potential energy surfaces for chemical reactions – 82.20.Nk Classical theories of reactions
and/or energy transfer – 87.15.He Dynamics and conformational changes – 82.20.-w Chemical kinetics
and dynamics

Potential surfaces (PS) hold the key to understanding
a wide range of molecular phenomena. The problems of
how a denatured protein re-folds to its active state, what
governs a system’s “structure-seeking” or “glass-former”
characteristics, or similarly, the “strong” and “fragile”
classification of liquids and glasses have largely been ad-
dressed in terms of the underlying energy landscapes [1,2].
In order to characterize a PS it is necessary to select
and then survey its important features: minima, transi-
tion states and pathways. Since the number of such fea-
tures increases at least exponentially with the number of
the system’s constituents (atoms, ions or molecules), it
is impractical and undesirable to catalogue them all for
large systems. Thus, it seems more convenient, at a given
total energy of the system, to focus on those minima of the
PS which can be grouped into disjoint sets, called basins.
Recently, we developed the inter-basin motion (IBM) ap-
proach, which recasts the dynamics on a multidimensional
PS from state-to-state to basin-to-basin transitions [3].
The leading assumption is that the intra- and inter-basin
dynamics are of different scales. The IBM approach uses a
general prescription to compute, directly, the escape rate
of the system from each basin of the characteristic PS
with full consideration of the topographical fingerprint of
that basin. The theoretical foundation is provided by a
non-Markovian treatment of the system’s behavior inside
the basin. In addition, the approach allows one to study
the relation between the dynamics and the coupling
with the thermal bath.
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Here, we briefly review the basic concepts of the IBM
approach. To illustrate the utility of these concepts we use
the IBM approach to diagnose dynamics on various PSs.
We show that certain topographical patterns of complex
PSs underlie kinetic properties that may lead the prob-
ability density to concentrate in basins of high energy,
in which “wrong” structures [2] are kinetically favored,
rather than in the basin of lowest energy, often assumed
to be the native structure in the case of proteins. Based on
this information, we are able to conclude that kinetic traps
of “wrong” structures are distinctive topographical pat-
terns that may induce kinetic properties similar to those of
the basin containing the global minimum, but lie in other
basins. We examine also properties that link the contact
between a reaction coordinate and thermal bath with the
efficiency of relaxation on the PS. This strategy seems very
informative in the study of dynamics of conformationally
constrained systems, where the constriction in the con-
formation space may frequently culminate with splitting
the energy landscape in multiple competing basins [4]. It
may also help to improve the optimization method for
controlling the structures of clusters and nanoscale parti-
cles during their preparation and to the modeling of real
materials [5,6].

The IBM approach assumes that the basin dynamics
is governed by energy accumulation and relaxation pro-
cesses among the local wells (individual minima compos-
ing a basin). The change of curvature of the effective po-
tential between the bottom and the top of each local well
can bring the typical rate of energy exchange between the



204 The European Physical Journal D

reaction mode and other modes to a value comparable
with that of the characteristic vibrational period of the
thermal bath. In this case, the system’s motion inside the
basin is non-Markovian. This behavior is characterized by
a time-dependent friction kernel Z = Z(t) at the contact
between the system and the thermal bath, which usually
is assumed to have a Gaussian form

Z (t) =
γ

tc
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Here, Z(t) expresses the time correlation function of the
random force F (t) exerted by the thermal bath on the re-
active mode and is associated with the correlation time tc
and the Markovian friction γ; tc is a measure of the ex-
tent or rate of equipartition of the reaction mode ω with
the thermal bath. The random force F (t) exerted by the
thermal bath on the reaction coordinate is also Gaussian
and satisfies the second fluctuation dissipation theorem
〈F (t)F (0)〉 = MkBTZ(t) [7]. Here kBT (= 1/β) has the
usual meaning and M stands for the mass of the system.
The above statement enables a formulation of a stochas-
tic, one-degree-of-freedom process for the energy E in the
unstable mode ω(E)
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µ is the energy diffusion coefficient. This is known as the
reduced Fokker-Planck equation which gives the proba-
bility distribution p(E, t) for the energy variable E. This
equation implies the following expression for the mean first
passage time τi,α along each “escape channel” that leads
the system to reach the top of the basin α(Ebα) starting
from a specified local well i:

τi,α (Ebα, Es) =
∫ Ebα

Es

dE
exp (βE)
µi,α (E)

∫ E

0

dE′ exp (−βE′)
ωi,α (E′)

·
(3)

We now define an effective value of the mean first passage
time τα(Ebα, Es), which is the summation over indepen-
dent contributions τi,α(Ebα, Es) of all the individual states
wi,α (i = 0, Nα) of the basin α

1
τα (Ebα, Es)

=
Nα∑
i=0

fi,α (Ei, Ebi)
τi,α (Ebα, Es)

· (4)

Here, τα(Ebα, Es) is the average time in which the system
escapes from the basin α; Nα is the number of conforma-
tion states in the basin α and accounts for the geometric
entropy dimension of that basin; f is the weight of each
individual contribution to the average (4) given by

fi,α (Ei, Ebi) = ϑ (Ebi − Es)ϑ (Es − Ei) , (5)

where ϑ is the unit-step function. Also Ei and Ebi are the
positions on the energy spectrum of the minimum wi,α and
the saddle between the minima wi,α and wi+1,α, uphill.
We then use the following expression for computing the

escape rate coefficient from the basin α

kα =
∫ Ebα

0

dEspss,α (Es)

(
Nα∑
i=0

fi,α (Ei, Ebi)
τi,α (Ebα, Es)

)
, (6)

which is the average of the effective value of the mean
first passage time τα over the steady state distribution
pss(Es). We assume that the system rapidly achieves ther-
mal equilibrium in the well of the starting point Es, so
that the steady state distribution of probability pss is of
a Boltzmann form

pss,α (E) � e−βE

β (1 − e−βEbα)
· (7)

In order to compute the escape rate coefficient kα (Eq. (6))
corresponding to the basin α, we have first to account
for the average value of τα(Ebα, Es). According to equa-
tion (4), this quantity can be obtained if one knows the
contributions τi,α of the individual minima. The indepen-
dent contributions τi,α (Eq. (3)) to the average value of the
mean first passage time τα depend on both vibrational fre-
quency function ωi,α(E) and corresponding energy diffu-
sion coefficient µi,α(E). The key frequency is derived from
the specific form of the potential Veff in the region of the
interbasin saddle or divide. Here, this is approximated by
a harmonic oscillator of frequency ω

(0)
α . Accordingly, the

corresponding energy diffusion coefficient is [3]

µα (E) =
Eγ

βω
(0)
α

exp
(−ρ2

α

)
, (8)

where ρα = ω
(0)
α tc determines the memory friction param-

eter. If the system is embedded in a solvent, the friction
constant γ (the damping rate) depends on the viscosity of
the environment and on the characteristic geometry of the
system inside the particular basin α [4]. What we obtain
here is the connection between the thermal bath proper-
ties and the ability of the system to relax on a complex PS.
Generally, this information is of great utility in controlled
optimization of the structures of clusters and nanoscale
particles during their preparation and in the modeling of
real materials.

The above approach makes it possible to study the re-
lation between topography and kinetics on those complex
potential surfaces that are reasonably described by sam-
ples of their basin patterns. Thus, equation (6) contains all
the requisite information about the main properties of the
topographical pattern, particularly the relative positions
of minima and saddles along the monotonic sequences.
(These are sequences of stationary points whose successive
minima have energies that increase monotonically from
the basin bottom [5].) Moreover, general properties of the
thermal bath also intervene in system’s dynamics. The set
of equations (3–8) is used to compute escape rates from
corresponding steep basins on a particular sample of the
PS. Those rates are incorporated into a master equation

∂Pα

∂t
=
∑

λ

(kλαPλ − kαλPα) . (9)
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Fig. 1. The archetype of potential surface (PS) yielding the
kinetic trap in the secondary basin (SB). In this figure, PB
stands for the primary basin, TB denotes the tertiary basin
and pi, si and ti define the individual minima composing these
basins.

The description of flow of a distribution on the surface is
then extracted by analyzing the eigenvectors (Pα) of the
master equation in terms of the pattern of the topography
of that PS. The kαλ is the transition probability from
basin α to basin λ [5].

Based on our previous results [3], we are able to de-
sign the topography of a PS that may afford kinetic traps.
For instance, we can select arbitrarily a sample of PS, pro-
ceed further with partitioning the basins and compute the
escape rates from those basins. Then, we smoothly mod-
ify the topographical pattern of a certain basin, say the
secondary basin (SB) of the PS depicted in Figure 1, to
make its kinetic properties the same as those of the pri-
mary basin (PB). Afterwards, we examine the probability
flow on this new PS sample and show that, at long times,
the system explores equally both primary and secondary
basins. Obviously, the system remains in the SB for very
long times before achieving equilibrium if the topography
of the SB is designed to yield even a lower rate of escape.

With all the assumptions of the model and its math-
ematical output now presented, we are in the position to
compute the escape rate kα for each of these three basins.
All topographical information about the PS required in
our computation is contained in Figure 1. The energy is
displayed in kBT units. The numerical value of the dimen-
sionless parameter ρ is 1.5, which is in the domain of weak
coupling of the reaction coordinate with the thermal bath.
The output of the above theory for the escape rate of the
system from the PB to SB is kPS = 0.0280 in units of γ
(∼ 1013 s−1). (All the numerical results of the escape rates
are given in units of the damping rate γ.) The value of the
escape rate from the PB to the TB is kPT = 0.0275 and
that corresponding to the transition from the high-energy
basin TB is kT = 0.321. All these three escape rates are
kept constant in the following. The original topographi-
cal pattern of the SB, which was slightly different from
that displayed in Figure 1, yielded kSP = 0.0314 for the
transition from SB to PB and kST = 0.0309 for the tran-
sition from SB to TB, respectively. Figure 2a depicts the
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Fig. 2. (a) Time evolution (in units of 1/γ, γ ∼ 1012 s−1) of
probability density distributions in primary basin (PB), sec-
ondary basin (SB) and tertiary basin (TB) corresponding to
the original potential surface (PS). Populations are well defined
on the same time scale. (b) Time evolution (in units of 1/γ,
γ ∼ 1012 s−1) of probability density distributions in basins of
the PS displayed in Figure 1. This PS was modified in order
to produce a kinetic trap in the SB.

time evolution of the probability density distributions cor-
responding to the escape rates given above. (We assumed
that at the initial moment (t = 0) the system is in the
TB with the probability PT (t = 0) = 1.) One can observe
that all three basins have well defined population distri-
butions on the characteristic time-scale. The increase in
the population of the PB is sharp (see the curve labeled
PB) and the probability reaches a plateau, which is higher
than that corresponding to the SB (see SB in Fig. 2a).

By varying the positions on the energy axis of the min-
ima (or saddles) corresponding to the SB, we are able to
control the value of the escape rate from that basin. For
the topographical fingerprint displayed in Figure 1, the
IBM approach produces similar numerical values for the
forward and backward escape rates between PB and SB,
kPS ≡ kSP = 0.0280. This is the condition for the oc-
currence of the kinetic trap. As can be seen in Figure 2b,
the equilibrium population of the SB is attained on the
same time scale and evenly balances that corresponding to
the PB. Consequently the system is found, at long times,
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with the same probability in the PB of the global mini-
mum or is trapped in the SB of “wrong structures”. The
balance may decisively be turned around if the escape
from the SB is tuned to a low rate. This circumstance is at-
tained, for example, by decreasing the weight with which
the low energy minimum s2 (see, Fig. 1) contributes to
the average value of the mean first passage time τα, e.g.,
by moving its position up on the energy scale. The system
will now stack in the SB. Indeed, the energies correspond-
ing to the stationary points in the SB can be changed
systematically to induce the asymptotic probability of the
SB above, or below, that of the PB.

The main inference from above is that the relative
positions of the stationary points in the monotonic se-
quences with respect to the lowest minimum are impor-
tant in setting the efficiency of passage into or out of
a steep basin. There is yet an other important observa-
tion to be made. This comes out by comparing the escape
rate from the SB with that corresponding to the escape
from a smooth potential well of the same depth as above
(12kBT ), with no other secondary minima. The smooth
potential well provides the lower bound of the escape rate,
that is k0 = 0.6 × 10−4. The rate coefficient k0 is about
three orders of magnitude smaller than kSP . Therefore we
can say that generally the presence of secondary minima
on the wall of the basin assists the rate of passage. These
two consequences allow us to conclude that the number of
local minima in the monotonic sequences and the distribu-
tion on the energy scale of both minima and saddles have
significant effects on the escape rate of the system from
that basin. The former aspect is an entropic manifestation
of the structural variety of the system while the latter re-
lates to the topographical fingerprint of that basin.

Finally, to bring our question to a larger perspective,
we recall that the topology of the PS plays also an
important role in the occurrence of kinetic traps. The way
in which different regions of the PS are inter-connected
may facilitate trapping in “wrong” structures. Especially,
the multiplicity of the pathways from high-energy states
towards regions of the PS other than the region contain-
ing the global minimum can be decisive [1]. As in the solid-

liquid transition for which densities of locally stable states
control the balance, in complex systems, entropy may win
over energy in transition processes, if the number of high-
energy pathways more than compensates for the energetic
advantage of the lowest-energy path. Moreover, for those
PSs characterized by basin regions with similar kinetic
connectivities and/or energies, there is a fragile balance
between trapping and focusing to the native structure or
to one of a few, closely related structures. The conditions
that are thermodynamically most favorable for focusing to
the global minimum for the standard PS also most favor
trapping in “wrong” structures.

We conclude that for polyatomic molecules, clusters,
proteins and other nanoscale particles, it is beginning to
seem feasible to infer from topographical and thermody-
namical properties of the PS the extent to which a system
is either trapped in basins of “wrong structures” or “fo-
cusing”, in the sense of going to a single structure or a
small set of related structures. Work in progress is explor-
ing tests of the reliability of statistical samples, and of the
influence of the density of saddles, the distribution of sad-
dle heights along monotonic sequences of minima and the
distribution of monotonic sequences among the basins on
the trapping or focusing character of the surface.
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